sin 163° cos 347° + sin 73° sin 167° =

Question:

sin 163° cos 347° + sin 73° sin 167° =

(a) 0

(b) $\frac{1}{2}$

(c) 1

(d) None of these

Solution:

(b) $\frac{1}{2}$

$\sin 163^{\circ} \cos 347^{\circ}+\sin 73^{\circ} \sin 167^{\circ}$

$=\sin \left(180^{\circ}-17^{\circ}\right) \cos \left(360^{\circ}-13^{\circ}\right)+\sin \left(90^{\circ}-17^{\circ}\right) \sin \left(180^{\circ}-13^{\circ}\right)$

 

$=\sin 17^{\circ} \cos 13^{\circ}+\cos 17^{\circ} \sin 13^{\circ}$

$=\sin \left(17^{\circ}+13^{\circ}\right)$    $[\sin (A+B)=\sin A \cos B+\sin B \cos A]$

$=\sin 30^{\circ}$

 

$=\frac{1}{2}$

Leave a comment