Simplify the following using the formula: (a − b)(a + b) = a2 − b2:
(i) (82)2 − (18)2
(ii) (467)2 − (33)2
(iii) (79)2 − (69)2
(iv) 197 × 203
(v) 113 × 87
(vi) 95 × 105
(vii) 1.8 × 2.2
(viii) 9.8 × 10.2
Here, we will use the identity $(a-b)(a+b)=a^{2}-b^{2}$
(i) Let us consider the following expression:
$(82)^{2}-(18)^{2}$
$=(82+18)(82-18)$
$=100 \times 64$
$=6400$
(ii) Let us consider the following expression:
$(467)^{2}-(33)^{2}$
$=(467+33)(467-33)$
$=500 \times 434$
$=217000$
(iii) Let us consider the following expression:
$(79)^{2}-(69)^{2}$
$=(79+69)(79-69)$
$=148 \times 10$
$=1480$
(iv) Let us consider the following product:
$197 \times 203$
$\because \frac{197+203}{2}=\frac{400}{2}=200$; therefore, we will write the above product as:
$197 \times 203$
$=(200-3)(200+3)$
$=(200)^{2}-(3)^{2}$
$=40000-9$
$=39991$
Thus, the answer is 39991 .
(v) Let us consider the following product:
$113 \times 87$
$\because \frac{113+87}{2}=\frac{200}{2}=100$; therefore, we will write the above product as:
$113 \times 87$
$=(100+13)(100-13)$
$=(100)^{2}-(13)^{2}$
$=10000-169$
$=9831$
Thus, the answer is 9831.
(vi) Let us consider the following product:
$95 \times 105$
$\because \frac{95+105}{2}=\frac{200}{2}=100$; therefore, we will write the above product as:
$95 \times 105$
$=(100+5)(100-5)$
$=(100)^{2}-(5)^{2}$
$=10000-25$
$=9975$
Thus, the answer is 9975.
(vii) Let us consider the following product:
$1.8 \times 2.2$
$\because \frac{1.8+2.2}{2}=\frac{4}{2}=2 ;$ therefore, we will write the above product as:
$1.8 \times 2.2$
$=(2-0.2)(2+0.2)$
$=(2)^{2}-(0.2)^{2}$
$=4-0.04$
$=3.96$
Thus, the answer is 3.96.
(viii) Let us consider the following product:
$9.8 \times 10.2$
$\because \frac{9.8+10.2}{2}=\frac{20}{2}=10 ;$ therefore, we will write the above product as:
$9.8 \times 10.2$
$=(10-0.2)(10+0.2)$
$=(10)^{2}-(0.2)^{2}$
$=100-0.04$
$=99.96$
Thus, the answer is 99.96.