Simplify the following expressions:
(i) $(11+\sqrt{11})(11-\sqrt{11})$
(ii) $(5+\sqrt{7})(5-\sqrt{7})$
(iii) $(\sqrt{8}-\sqrt{2})(\sqrt{8}+\sqrt{2})$
(iv) $(3+\sqrt{3})(3-\sqrt{3})$
(v) $(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})$
(i) $(11+\sqrt{11})(11-\sqrt{11})$
As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
So, $11^{2}-11$
$121-11=110$
(ii) $(5+\sqrt{7})(5-\sqrt{7})$
As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
So, $5^{2}-7$
$25-7=18$
(iii) $(\sqrt{8}-\sqrt{2})(\sqrt{8}+\sqrt{2})$
As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
$\sqrt{8 \times 8}-\sqrt{2 \times 2}=8-2$
$=6$
(iv) $(3+\sqrt{3})(3-\sqrt{3})$
As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
$=9-\sqrt{3 \times 3}$
$=6$
(v) $(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})$
As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
$=\sqrt{5 \times 5}-\sqrt{2 \times 2}$
$=5-2$
$=3$