Simplify the following
(i) $\sqrt{45}-\sqrt[3]{20}+4 \sqrt{5}$
(ii) $\frac{\sqrt{24}}{8}+\frac{\sqrt{54}}{9}$
(iii) $\sqrt[4]{12} \times \sqrt[7]{6}$
(iv) $4 \sqrt{28}+3 \sqrt{7} \div \sqrt[3]{7}$
(v) $3 \sqrt{3}+2 \sqrt{27}+\frac{7}{\sqrt{3}}$
(vi) $(\sqrt{3}-\sqrt{2})^{2}$
(vii) $\sqrt[4]{81}-8 \sqrt[3]{216}+15 \sqrt[5]{32}+\sqrt{225}$
(viii) $\frac{3}{\sqrt{8}}+\frac{1}{\sqrt{2}}$
(ix) $\frac{2 \sqrt{3}}{3}-\frac{\sqrt{3}}{6}$
(i) $\sqrt{45}-3 \sqrt{20}+4 \sqrt{5}=\sqrt{3 \times 3 \times 5}-3 \sqrt{2 \times 2 \times 2}+4 \sqrt{5}$
$=3 \sqrt{5}-3 \times 2 \sqrt{5}+4 \sqrt{5}$
$=3 \sqrt{5}-6 \sqrt{5}+4 \sqrt{5}=\sqrt{5}$
(ii) $\frac{\sqrt{24}}{8}+\frac{\sqrt{54}}{9}=\frac{\sqrt{2 \times 2 \times 2 \times 3}}{8}+\frac{\sqrt{3 \times 3 \times 3 \times 2}}{9}$
$=\frac{2 \sqrt{6}}{8}+\frac{3 \sqrt{6}}{9}=\frac{\sqrt{6}}{4}+\frac{\sqrt{6}}{3}$
$=\frac{3 \sqrt{6}+4 \sqrt{6}}{12}=\frac{7 \sqrt{6}}{12}$
(iii) $\sqrt[4]{12} \times \sqrt[7]{6}=(12)^{1 / 4} \times(6)^{1 / 7}$ $\left[\because \sqrt[n]{a}=a^{1 / n}\right]$
$=(2 \times 2 \times 3)^{1 / 4} \times(2 \times 3)^{1 / 7}=2^{1 / 4} \cdot 2^{1 / 4} \cdot 3^{1 / 4} \cdot 2^{1 / 7} \cdot 3^{1 / 7}$
$=2^{\frac{1}{4}+\frac{1}{4}+\frac{1}{7}} \times 3^{\frac{1}{4}+\frac{1}{7}}$ $\left[\because x^{m} \cdot x^{n}=x^{m+n}\right]$
$=2^{9 / 14} \times 3^{11 / 28}=\sqrt[14]{2^{9}} \sqrt[28]{3^{11}}$ $\left[\because \sqrt[n]{a}=\sqrt[m n]{a^{m}}\right]$
(iv) $4 \sqrt{28}+3 \sqrt{7}+\sqrt[3]{7}=(4 \sqrt{4 \times 7}+3 \sqrt{7})+\sqrt[3]{7}$
$=\left(\frac{8 \sqrt{7}}{3 \sqrt{7}}\right)+(7)^{\frac{1}{3}}$ $\left[\because \sqrt[n]{a}=a^{1 / n}\right]$
$=\frac{8}{3}+7^{\frac{1}{3}}=\frac{8}{3 \sqrt[3]{7}}$
(v) $3 \sqrt{3}+2 \sqrt{27}+\frac{7}{\sqrt{3}}=3 \sqrt{3}+2 \sqrt{3 \times 3 \times 3}+\frac{7}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
$=3 \sqrt{3}+6 \sqrt{3}+\frac{7 \sqrt{3}}{3}=9 \sqrt{3}+\frac{7 \sqrt{3}}{3}$
$=\frac{27 \sqrt{3}+7 \sqrt{3}}{3}=\frac{34 \sqrt{3}}{3}$
(vi) $(\sqrt{3}-\sqrt{2})^{2}=(\sqrt{3})^{2}+(\sqrt{2})^{2}-2 \sqrt{3} \times \sqrt{2}$ [using identity, $(a-b)^{2}=a^{2}+b^{2}-2 a b$ ]
$=3+2-2 \sqrt{3 \times 2}=5-2 \sqrt{6}$
(vii) $\sqrt[4]{81}-8 \sqrt[3]{216}+15 \sqrt[5]{32}+\sqrt{225}$
$=(81)^{\frac{1}{4}}-8 \times(216)^{\frac{1}{3}}+15 \times(32)^{\frac{1}{5}}+\sqrt{(15)^{2}}$ $\left[\because \sqrt[m]{a}=a^{1 / m}\right]$
$=\left(3^{4}\right)^{\frac{1}{4}}-8 \times\left(6^{3}\right)^{\frac{1}{3}}+15 \times\left(2^{5}\right)^{\frac{1}{5}}+15$
$=3^{4 \times \frac{1}{4}}-8 \times 6^{3 \times \frac{1}{3}}+15 \times 2^{5 \times \frac{1}{5}}+15$ $\left[\because\left(a^{m}\right)^{n}=a^{m n}\right]$
$=3^{1}-8 \times 6^{1}+15 \times 2^{1}+15$
$=3-48+30+15$
$=48-48=0$
(viii) $\frac{3}{\sqrt{8}}+\frac{1}{\sqrt{2}}=\frac{3}{\sqrt{2 \times 2 \times 2}}+\frac{1}{\sqrt{2}}=\frac{3}{2 \sqrt{2}}+\frac{1}{\sqrt{2}}$
$=\frac{3+2}{2 \sqrt{2}}=\frac{5}{2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$ [multiplying numerator and denominator by $\sqrt{2}$ ]
$=\frac{5 \sqrt{2}}{2 \times 2}=\frac{5 \sqrt{2}}{4}$
(ix) $\frac{2 \sqrt{3}}{3}-\frac{\sqrt{3}}{6}=\frac{4 \sqrt{3}-\sqrt{3}}{6}=\frac{3 \sqrt{3}}{6}=\frac{\sqrt{3}}{2}$