Simplify $\frac{7 \sqrt{3}}{\sqrt{10}+\sqrt{3}}-\frac{2 \sqrt{5}}{\sqrt{6}+\sqrt{5}}-\frac{3 \sqrt{2}}{\sqrt{15}+3 \sqrt{2}} .$
We have,
$\frac{7 \sqrt{3}}{\sqrt{10}+\sqrt{3}}-\frac{2 \sqrt{5}}{\sqrt{6}+\sqrt{5}}-\frac{3 \sqrt{2}}{\sqrt{15}+3 \sqrt{2}}$$\ldots($ i)
Now,
$\frac{7 \sqrt{3}}{\sqrt{10}+\sqrt{3}} \times \frac{\sqrt{10}-\sqrt{3}}{\sqrt{10}-\sqrt{3}}=\frac{7 \sqrt{30}-21}{(\sqrt{10})^{2}-(\sqrt{3})^{2}}$ [by rationalisation]
[using identity, $(a-b)(a+b)=a^{2}-b^{2}$ ]
$=\frac{7 \sqrt{30}-21}{10-3}=\frac{7(\sqrt{30}-3)}{7}=\sqrt{30}-3$
$\frac{2 \sqrt{5}}{\sqrt{6}+\sqrt{5}}=\frac{2 \sqrt{5}}{(\sqrt{6}+\sqrt{5})} \times \frac{(\sqrt{6}-\sqrt{5})}{(\sqrt{6}-\sqrt{5})}$ [by rationalisation] .
$=\frac{2 \sqrt{30}-10}{(\sqrt{6})^{2}-(\sqrt{5})^{2}}$ [using identity, $\left.(a-b)(a+b)=a^{2}-b^{2}\right]$
$=\frac{2 \sqrt{30}-10}{(\sqrt{6})^{2}-(\sqrt{5})^{2}}$ [using identity, $(a-b)(a+b)=a^{2}-b^{2}$ ]
$=\frac{2 \sqrt{30}-10}{6-5}=2 \sqrt{30}-10$
and
$\frac{3 \sqrt{2}}{\sqrt{15}+3 \sqrt{2}}=\frac{3 \sqrt{2}}{\sqrt{15}+3 \sqrt{2}} \times \frac{\sqrt{15}-3 \sqrt{2}}{\sqrt{15}-3 \sqrt{2}}$ [by rationalisation]
$=\frac{3 \sqrt{30}-18}{(\sqrt{15})^{2}-(3 \sqrt{2})^{2}}$ [using identity, $(a-b)(a+b)=a^{2}-b^{2}$ ]
$=\frac{3(\sqrt{30}-6)}{15-18}=\frac{3(\sqrt{30}-6)}{-3}=(-\sqrt{30}+6)$
$=6-\sqrt{30}$
From Eq. (i), $\frac{7 \sqrt{3}}{\sqrt{10}+\sqrt{3}}-\frac{2 \sqrt{5}}{\sqrt{6}+\sqrt{5}}-\frac{3 \sqrt{2}}{\sqrt{15}+3 \sqrt{2}}$
$=(\sqrt{30}-3)-(2 \sqrt{30}-10)-(6-\sqrt{30})$
$=\sqrt{30}-3-2 \sqrt{30}+10-6+\sqrt{30}$
$=2 \sqrt{30}-2 \sqrt{30}+10-9=1$