Question:
Simplify each of the following and express it in the form (a + ib) :
$(2+\sqrt{-3})^{2}$
Solution:
Given: $(2-\sqrt{-3})^{2}$
We know that
$(a-b)^{2}=a^{2}+b^{2}-2 a b \ldots(i)$
So, on replacing a by 2 and b by $\sqrt{-3}$ in eq. (i), we get
$(2)^{2}+(\sqrt{-3})^{2}-2(2)(\sqrt{-3})$
$=4+(-3)-4 \sqrt{-3}$
$=4-3-4 \sqrt{-3}$
$=1-4 \sqrt{3} \mathrm{i}^{2}\left[\because \mathrm{i}^{2}=-1\right]$
$=1-4 \mathrm{i} \sqrt{3}$