Question:
Simplify each of the following and express it in the form (a + ib) :
$(4-3 i)^{-1}$
Solution:
Given: $(4-3 i)^{-1}$
We can re- write the above equation as
$=\frac{1}{4-3 i}$
Now, rationalizing
$=\frac{1}{4-3 i} \times \frac{4+3 i}{4+3 i}$
$=\frac{4+3 i}{(4-3 i)(4+3 i)} \ldots$ (i)
Now, we know that,
$(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
So, eq. (i) become
$=\frac{4+3 i}{(4)^{2}-(3 i)^{2}}$
$=\frac{4+3 i}{16-9 i^{2}}$
$=\frac{4+3 i}{16-9(-1)}\left[\because i^{2}=-1\right]$
$=\frac{4+3 i}{16+9}$
$=\frac{4+3 i}{25}$
$=\frac{4}{25}+\frac{3}{25} i$