Question:
Simplify each of the following and express it in the form a + ib :
$(3+\sqrt{-16})-(4-\sqrt{-9})$
Solution:
Given: $(3+\sqrt{-16})-(4-\sqrt{-9})$
We re - write the above equation
$(3+\sqrt{(-1) \times 16})(-1)(4-\sqrt{(-1) \times 9})$
$=\left(3+\sqrt{16 i^{2}}\right)-\left(4-\sqrt{9 i^{2}}\right)\left[\because i^{2}=-1\right]$
$=(3+4 i)-(4-3 i)$
Now, we open the brackets, we get
$3+4 i-4+3 i$
$=-1+7 i$