Question:
Simplify each of the following and express it in the form a + ib
$(5+\sqrt{-3})(5-\sqrt{-3})$
Solution:
Given: $(5+\sqrt{-3})(5-\sqrt{-3})$
We re – write the above equation
$(5+\sqrt{(-1) \times 3})(5-\sqrt{(-1) \times 3})$
$=\left(5+\sqrt{3 i^{2}}\right)\left(5-\sqrt{3 i^{2}}\right)\left(\because, i^{2}=-1\right]$
$=(5+i \sqrt{3})(5-i \sqrt{3})$
Now, we know that,
$(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
Here, $a=5$ and $b=i \sqrt{3}$
$=(5)^{2}-(i \sqrt{3})^{2}$
$=25-\left(3 i^{2}\right)$
$=25-[3 \times(-1)]$
$=25+3$
$=28+0$
$=28+0 i$