Question:
Simplify each of the following and express it in the form a + ib
$(-2+\sqrt{-3})(-3+2 \sqrt{-3})$
Solution:
Given: $(-2+\sqrt{-3})(-3+2 \sqrt{-3})$
We re – write the above equation
$(-2+\sqrt{(-1) \times 3})(-3+2 \sqrt{(-1) \times 3})$
$=\left(-2+\sqrt{3 i^{2}}\right)\left(-3+2 \sqrt{3 i^{2}}\right)$
$\left[\because, i^{2}=-1\right]$
$=(-2+i \sqrt{3})(-3+2 i \sqrt{3})$
Now, open the brackets
$=-2 \times(-3)+(-2) \times 2 \mathrm{i} \sqrt{3}+\mathrm{i} \sqrt{3} \times(-3)+\mathrm{i} \sqrt{3} \times 2 \mathrm{i} \sqrt{3}$
$=6-4 \mathrm{i} \sqrt{3}-3 \mathrm{i} \sqrt{3}+6 \mathrm{i}^{2}$
$=6-7 \mathrm{i} \sqrt{3}+[6 \times(-1)]\left[\because, \mathrm{i}^{2}=-1\right]$
$=6-7 \mathrm{i} \sqrt{3}-6$
$=0-7 \mathrm{i} \sqrt{3}$