Question:
Simplify:
x2(x − y) y2(x + 2y)
Solution:
To simplify, we will proceed as follows:
x2(x − y) y2(x + 2y)
$=\left[x^{2}(x-y)\right]\left[y^{2}(x+2 y)\right]$
$=\left(x^{3}-x^{2} y\right)\left(x y^{2}+2 y^{3}\right)$
$=x^{3}\left(x y^{2}+2 y^{3}\right)-x^{2} y\left(x y^{2}+2 y^{3}\right)$
$=x^{4} y^{2}+2 x^{3} y^{3}-\left[x^{3} y^{3}+2 x^{2} y^{4}\right]$
$=x^{4} y^{2}+2 x^{3} y^{3}-x^{3} y^{3}-2 x^{2} y^{4}$
$=x^{4} y^{2}+x^{3} y^{3}-2 x^{2} y^{4}$
Thus, the answer is $x^{4} y^{2}+x^{3} y^{3}-2 x^{2} y^{4}$.