Simplify
(i) $(3-\sqrt{11})(3+\sqrt{11})$
(ii) $(-3+\sqrt{5})(-3-\sqrt{5})$
(iii) $(3-\sqrt{3})^{2}$
(iv) $(\sqrt{5}-\sqrt{3})^{2}$
(v) $(5+\sqrt{7})(2+\sqrt{5})$
(vi) $(\sqrt{5}-\sqrt{2})(\sqrt{2}-\sqrt{3})$
(i) $(3-\sqrt{11})(3+\sqrt{11})$
$=3^{2}-(\sqrt{11})^{2} \quad\left[(a-b)(a+b)=a^{2}-b^{2}\right]$
$=9-11$
$=-2$
(ii) $(-3+\sqrt{5})(-3-\sqrt{5})$
$=(-3)^{2}-(\sqrt{5})^{2} \quad\left[(a+b)(a-b)=a^{2}-b^{2}\right]$
$=9-5$
$=4$
(iii) $(3-\sqrt{3})^{2}$
$=3^{2}+(\sqrt{3})^{2}-2 \times 3 \times \sqrt{3} \quad\left[(a-b)^{2}=a^{2}+b^{2}-2 a b\right]$
$=9+3-6 \sqrt{3}$
$=12-6 \sqrt{3}$
(iv) $(\sqrt{5}-\sqrt{3})^{2}$
$=(\sqrt{5})^{2}+(\sqrt{3})^{2}-2 \times \sqrt{5} \sqrt{3} \quad\left[(a-b)^{2}=a^{2}+b^{2}-2 a b\right]$
$=5+3-2 \sqrt{15}=8-2 \sqrt{15}$
$=\sqrt{5} \times \sqrt{2}-\sqrt{5} \times \sqrt{3}-\sqrt{2} \times \sqrt{2}+\sqrt{2} \times \sqrt{3}$
$=\sqrt{10}-\sqrt{15}-2+\sqrt{6}$
(v) $(5+\sqrt{7})(2+\sqrt{5})$
$(5+\sqrt{7})(2+\sqrt{5})$
$=5 \times 2+5 \times \sqrt{5}+\sqrt{7} \times 2+\sqrt{7} \times \sqrt{5}$
$=10+5 \sqrt{5}+2 \sqrt{7}+\sqrt{35}$
(vi) $(\sqrt{5}-\sqrt{2})(\sqrt{2}-\sqrt{3})$
$(\sqrt{5}-\sqrt{2})(\sqrt{2}-\sqrt{3})$
$=\sqrt{5} \times \sqrt{2}-\sqrt{5} \times \sqrt{3}-\sqrt{2} \times \sqrt{2}+\sqrt{2} \times \sqrt{3}$
$=\sqrt{10}-\sqrt{15}-2+\sqrt{6}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.