Question:
Simplify $\left(\frac{3125}{243}\right)^{\frac{4}{5}}$
Solution:
$\left(\frac{3125}{243}\right)^{\frac{4}{5}}$
$=\left(\frac{5 \times 5 \times 5 \times 5 \times 5}{3 \times 3 \times 3 \times 3 \times 3}\right)^{\frac{4}{5}}$
$=\left(\frac{5^{5}}{3^{5}}\right)^{\frac{4}{5}}$
$=\left[\left(\frac{5}{3}\right)^{5}\right]^{\frac{4}{5}}$
$\left[\left(\frac{x}{y}\right)^{a}=\frac{x^{a}}{y^{a}}\right]$
$\left[\left(x^{a}\right)^{b}=x^{a b}\right]$
$=\left(\frac{5}{3}\right)^{5 \times \frac{4}{5}}$
$=\left(\frac{5}{3}\right)^{4}$
$=\frac{5 \times 5 \times 5 \times 5}{3 \times 3 \times 3 \times 3}$
$=\frac{625}{81}$