Simplify:
(x2 − 3x + 2)(5x − 2) − (3x2 + 4x − 5)(2x − 1)
To simplify, we will proceed as follows:
(x2 − 3x + 2)(5x − 2) − (3x2 + 4x − 5)(2x − 1)
$=\left[\left(x^{2}-3 x+2\right)(5 x-2)\right]-\left[\left(3 x^{2}+4 x-5\right)(2 x-1)\right]$
$=\left[5 x\left(x^{2}-3 x+2\right)-2\left(x^{2}-3 x+2\right)\right]-\left[2 x\left(3 x^{2}+4 x-5\right)-1 \times\left(3 x^{2}+4 x-5\right)\right]$ (Distributive law)
$=\left[5 x^{3}-15 x^{2}+10 x-\left(2 x^{2}-6 x+4\right)\right]-\left[6 x^{3}+8 x^{2}-10 x-3 x^{2}-4 x+5\right]$
$=\left[5 x^{3}-15 x^{2}+10 x-2 x^{2}+6 x-4\right]-\left[6 x^{3}+8 x^{2}-10 x-3 x^{2}-4 x+5\right]$
$=5 x^{3}-15 x^{2}+10 x-2 x^{2}+6 x-4-6 x^{3}-8 x^{2}+10 x+3 x^{2}+4 x-5$
$=5 x^{3}-6 x^{3}-15 x^{2}-2 x^{2}-8 x^{2}+3 x^{2}+10 x+6 x+10 x+4 x-5-4$ (Rearranging)
$=-x^{3}-22 x^{2}+30 x-9$ (Combining like terms)
Thus, the answer is $-x^{3}-22 x^{2}+30 x-9$.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.