Simplify:
(i) $\left\{4^{-1} \times 3^{-1}\right\}^{2}$
(ii) $\left\{5^{-1} \div 6^{-1}\right\}^{3}$
(iii) $\left(2^{-1}+3^{-1}\right)^{-1}$
(iv) $\left\{3^{-1} \times 4^{-1}\right\}^{-1} \times 5^{-1}$
(v) $\left(4^{-1}-5^{-1}\right) \div 3^{-1}$
$(i)\left(4^{-1} \times 3^{-1}\right)^{2}=\left(\frac{1}{4} \times \frac{1}{3}\right)^{2} \quad \ldots\left(a^{-1}=1 / a\right)$
$=\left(\frac{1}{12}\right)^{2}$
$=\frac{(1)^{2}}{(12)^{2}} \quad \cdots>\left((a / b)^{n}=\left(a^{n}\right) /\left(b^{n}\right)\right)$
$=\frac{1}{144}$
$(i i)\left(5^{-1} \div 6^{-1}\right)^{3}=\left(\frac{1}{5} \div \frac{1}{6}\right)^{3} \quad \cdots\left(a^{-1}=1 / a\right)$
$=\left(\frac{6}{5}\right)^{3}$
$=\frac{216}{125} \quad \quad \cdots\left((a / b)^{n}=\left(a^{n}\right) /\left(b^{n}\right)\right)$
$(i i i)\left(2^{-1}+3^{-1}\right)^{-1}=\left(\frac{1}{2}+\frac{1}{3}\right)^{-1}--->\left(a^{-1}=1 / a\right)$
$=\left(\frac{5}{6}\right)^{-1}=\frac{6}{5} \quad--->\left(\mathrm{a}^{-1}=1 / \mathrm{a}\right)$
$(i v)\left(3^{-1} \times 4^{-1}\right)^{-1} \times 5^{-1}=\left(\frac{1}{3} \times \frac{1}{4}\right)^{-1} \times \frac{1}{5} \quad \ldots\left(a^{-1}=1 / a\right)$
$=\left(\frac{1}{12}\right)^{-1} \times \frac{1}{5}$
$=12 \times \frac{1}{5} \quad \cdots\left(a^{-1}=1 / a\right)$
$=\frac{12}{5}$
$(v)\left(4^{-1}-5^{-1}\right) \div 3^{-1}=\left(\frac{1}{4}-\frac{1}{5}\right) \div \frac{1}{3} \quad \ldots>\left(a^{-1}=1 / a\right)$
$=\left(\frac{5-4}{20}\right) \times 3$
$=\frac{1}{20} \times 3$
$=\frac{3}{20}$