Simplify:
(i) $\left(3^{2}+2^{2}\right) \times\left(\frac{1}{2}\right)^{3}$
(ii) $\left(3^{2}-2^{2}\right) \times\left(\frac{2}{3}\right)^{-3}$
(iii) $\left[\left(\frac{1}{3}\right)^{-3}-\left(\frac{1}{2}\right)^{-3}\right] \div\left(\frac{1}{4}\right)^{-3}$
(iv) $\left(2^{2}+3^{2}-4^{2}\right) \div\left(\frac{3}{2}\right)^{2}$
(i) $\left(3^{2}+2^{2}\right) \times\left(\frac{1}{2}\right)^{3}=(9+4) \times \frac{1}{8}=\frac{13}{8}$
(ii) $\left(3^{2}-2^{2}\right) \times\left(\frac{2}{3}\right)^{-3}=(9-4) \times \frac{1}{(2 / 3)^{3}}$ ---> (a−1=1/(an))
$=5 \times \frac{1}{8 / 27}$ ---> ((a/b)n = (an)/(bn))
$=5 \times \frac{27}{8}$
$=\frac{135}{8}$
(iii) $\left(\left(\left(\frac{1}{3}\right)^{-3}-\left(\frac{1}{2}\right)^{-3}\right) \div\left(\frac{1}{4}\right)^{-3}=\left(3^{3}-2^{3}\right) \div 4^{3} \quad \ldots\left(a^{-n}=1 /\left(a^{n}\right)\right)\right.$
$=(27-8) \div 64$
$=19 \times \frac{1}{64}$
$=\frac{19}{64}$
(iv) $\left(2^{2}+3^{2}-4^{2}\right) \div\left(\frac{3}{2}\right)^{2}=(4+9-16) \times \frac{9}{4} \quad \cdots\left((a / b)^{n}=\left(a^{n}\right) /\left(b^{n}\right)\right)$
$=-3 \times \frac{9}{4}$
$=\frac{-27}{4}$