Question:
Simplify $(3+\sqrt{3})(2+\sqrt{2})^{2}$.
Solution:
$(3+\sqrt{3})(2+\sqrt{2})^{2}$
$=(3+\sqrt{3})\left[2^{2}+(\sqrt{2})^{2}+2 \times 2 \sqrt{2}\right]$
$=(3+\sqrt{3})[4+2+4 \sqrt{2}]$
$=(3+\sqrt{3})[6+4 \sqrt{2}]$
$=3 \times 6+3 \times 4 \sqrt{2}+\sqrt{3} \times 6+\sqrt{3} \times 4 \sqrt{2}$
$=18+12 \sqrt{2}+6 \sqrt{3}+4 \sqrt{6}$