Question:
Simplify: $\frac{2 \sqrt{45}+3 \sqrt{20}}{2 \sqrt{5}}$
Solution:
$\frac{2 \sqrt{45}+3 \sqrt{20}}{2 \sqrt{5}}=\frac{2 \sqrt{3 \times 3 \times 5}+3 \sqrt{2 \times 2 \times 5}}{2 \sqrt{5}}$
$=\frac{2 \times 3 \sqrt{5}+3 \times 2 \sqrt{5}}{2 \sqrt{5}}$
$=\frac{6 \sqrt{5}+6 \sqrt{5}}{2 \sqrt{5}}$
$=\frac{12 \sqrt{5}}{2 \sqrt{5}}$
$=6$
Hence, simplified form of $\frac{2 \sqrt{45}+3 \sqrt{20}}{2 \sqrt{5}}$ is 6 .