Simplify:

Question:

Simplify:

(i) $\left(4^{-1} \times 3^{-1}\right)^{2}$

(ii) $\left(5^{-1} \div 6^{-1}\right)^{3}$

(iii) $\left(2^{-1}+3^{-1}\right)^{-1}$

(iv) $\left(3^{-1} \times 4^{-1}\right)^{-1} \times 5^{-1}$

 

Solution:

(i) $\left(4^{-1} \times 3^{-1}\right)^{2}=\left(\frac{1}{4} \times \frac{1}{3}\right)^{2} \quad \ldots\left(a^{-1}=1 / a\right)$

$=\left(\frac{1}{12}\right)^{2}$

$=\frac{1^{2}}{12^{2}}$        ---> ((a/b)n = (an)/(bn) )

$=\frac{1}{24}$

(ii) $\left(5^{-1} \div 6^{-1}\right)^{3}=\left(\frac{1}{5} \div \frac{1}{6}\right)^{3} \quad \ldots\left(a^{-1}=1 / a\right)$

$=\left(\frac{1}{5} \times 6\right)^{3}$

$=\left(\frac{6}{5}\right)^{3}$

$=\frac{(6)^{3}}{(5)^{3}} \quad \cdots\left((a / b)^{n}=\left(a^{n}\right) /\left(b^{n}\right)\right)$

$=\frac{216}{125}$

(iii) $\left(2^{-1}+3^{-1}\right)^{-1}=\left(\frac{1}{2}+\frac{1}{3}\right)^{-1} \quad \cdots\left(a^{-1}=1 / a\right)$

$=\left(\frac{5}{6}\right)^{-1}$

$=\frac{1}{5 / 6} \quad \cdots\left(a^{-1}=1 / a\right)$

$=\frac{6}{5}$

(iv) $\left(3^{-1} \times 4^{-1}\right)^{-1} \times 5^{-1}=\left(\frac{1}{3} \times \frac{1}{4}\right)^{-1} \times \frac{1}{5} \quad \cdots\left(a^{-1}=1 / a\right)$

$=\left(\frac{1}{12}\right)^{-1} \times \frac{1}{5}$

$=\frac{12}{5} \quad \cdots\left(a^{-1}=1 / a\right)$

Leave a comment