Simplify:
(i) $\left(4^{-1} \times 3^{-1}\right)^{2}$
(ii) $\left(5^{-1} \div 6^{-1}\right)^{3}$
(iii) $\left(2^{-1}+3^{-1}\right)^{-1}$
(iv) $\left(3^{-1} \times 4^{-1}\right)^{-1} \times 5^{-1}$
(i) $\left(4^{-1} \times 3^{-1}\right)^{2}=\left(\frac{1}{4} \times \frac{1}{3}\right)^{2} \quad \ldots\left(a^{-1}=1 / a\right)$
$=\left(\frac{1}{12}\right)^{2}$
$=\frac{1^{2}}{12^{2}}$ ---> ((a/b)n = (an)/(bn) )
$=\frac{1}{24}$
(ii) $\left(5^{-1} \div 6^{-1}\right)^{3}=\left(\frac{1}{5} \div \frac{1}{6}\right)^{3} \quad \ldots\left(a^{-1}=1 / a\right)$
$=\left(\frac{1}{5} \times 6\right)^{3}$
$=\left(\frac{6}{5}\right)^{3}$
$=\frac{(6)^{3}}{(5)^{3}} \quad \cdots\left((a / b)^{n}=\left(a^{n}\right) /\left(b^{n}\right)\right)$
$=\frac{216}{125}$
(iii) $\left(2^{-1}+3^{-1}\right)^{-1}=\left(\frac{1}{2}+\frac{1}{3}\right)^{-1} \quad \cdots\left(a^{-1}=1 / a\right)$
$=\left(\frac{5}{6}\right)^{-1}$
$=\frac{1}{5 / 6} \quad \cdots\left(a^{-1}=1 / a\right)$
$=\frac{6}{5}$
(iv) $\left(3^{-1} \times 4^{-1}\right)^{-1} \times 5^{-1}=\left(\frac{1}{3} \times \frac{1}{4}\right)^{-1} \times \frac{1}{5} \quad \cdots\left(a^{-1}=1 / a\right)$
$=\left(\frac{1}{12}\right)^{-1} \times \frac{1}{5}$
$=\frac{12}{5} \quad \cdots\left(a^{-1}=1 / a\right)$