Show thatProve

Question:

$\sqrt{x^{2}+4 x+6}$

Solution:

Let $I=\int \sqrt{x^{2}+4 x+6} d x$

$=\int \sqrt{x^{2}+4 x+4+2} d x$

$=\int \sqrt{\left(x^{2}+4 x+4\right)+2} d x$

$=\int \sqrt{(x+2)^{2}+(\sqrt{2})^{2}} d x$

It is known that, $\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+\mathrm{C}$

$\begin{aligned} \therefore I &=\frac{(x+2)}{2} \sqrt{x^{2}+4 x+6}+\frac{2}{2} \log \left|(x+2)+\sqrt{x^{2}+4 x+6}\right|+\mathrm{C} \\ &=\frac{(x+2)}{2} \sqrt{x^{2}+4 x+6}+\log \left|(x+2)+\sqrt{x^{2}+4 x+6}\right|+\mathrm{C} \end{aligned}$

Leave a comment