Question:
Show that the sequence defined by $a_{n}=3 n^{2}-5$ is not an A.P.
Solution:
In the given problem, we need to show that the given sequence is not an A.P
Here,
$a_{n}=3 n^{2}-5$
Now, first we will find its few terms by substituting $n=1,2,3,4,5$
So,
Substituting n = 1, we get
$a_{1}=3(1)^{2}-5$
$a_{1}=-2$
Substituting $n=2$, we get
$a_{2}=3(2)^{2}-5$
$a_{2}=7$
Substituting n = 3, we get
$a_{3}=3(3)^{2}-5$
$a_{3}=22$
Substituting n = 4, we get
$a_{4}=3(4)^{2}-5$
$a_{4}=43$
Substituting n = 5, we get
$a_{5}=3(5)^{2}-5$
$a_{5}=70$
Further, for the given sequence to be an A.P,
We find the common difference $(d)=a_{2}-a_{1}=a_{3}-a_{2}$
Thus,
$a_{2}-a_{1}=7-(-2)$
$=9$
Also,
$a_{3}-a_{2}=22-7$
$=15$
So, $a_{2}-a_{1} \neq a_{3}-a_{2}$
Hence, the given sequence is not an A.P.