Question:
Show that the sequence $
Solution:
We have:
$a_{n}=\frac{2}{3^{n}}, n \in N$
Putting $n=1,2,3, \ldots$
$a_{1}=\frac{2}{3^{1}}=\frac{2}{3}, a_{2}=\frac{2}{3^{2}}=\frac{2}{9}, a_{3}=\frac{2}{3^{3}}=\frac{2}{27}$ and so on.
Now, $\frac{a_{2}}{a_{1}}=\frac{\frac{2}{9}}{\frac{9}{3}}=\frac{1}{3}, \frac{a_{3}}{a_{2}}=\frac{\frac{2}{27}}{\frac{2}{9}}=\frac{1}{3}$ and so on.
$\therefore \frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\ldots=\frac{1}{3}$
So, the sequence is an G.P., where $\frac{2}{3}$ is the first term and $\frac{1}{3}$ is the common ratio.