Show that the relation $R$ on the set $A=\{x \in Z ; 0 \leq x \leq 12\}$, given by $R=\{(a, b): a=b\}$, is an equivalence relation. Find the set of all elements related to 1 .
We observe the following properties of R.
Reflexivity: Let a be an arbitrary element of A. Then,
$a \in R$
$\Rightarrow a=a$ [Since, every element is equal to itself]
$\Rightarrow(a, a) \in R$ for all $a \in A$
So, $R$ is reflexive on $A$.
Symmetry: Let $(a, b) \in R$
$\Rightarrow a b$
$\Rightarrow b=a$
$\Rightarrow(b, a) \in R$ for all $a, b \in A$
So, $R$ is symmetric on $A$.
Transitivity: Let $(a, b)$ and $(b, c) \in R$
$\Rightarrow a=b$ and $b=c$
$\Rightarrow a=b c$
$\Rightarrow a=c$
$\Rightarrow(a, c) \in R$
So, $R$ is transitive on $A$.
Hence, R is an equivalence relation on A.
The set of all elements related to 1 is {1}.