Question:
Show that the polynomial $f(x)=x^{4}+4 x^{2}+6$ has no zeroes.
Solution:
Let $t=x^{2}$
So, $f(t)=t^{2}+4 t+6$
Now, to find the zeroes, we will equate $f(t)=0$.
$\Rightarrow t^{2}+4 t+6=0$
Now, $t=\frac{-4 \pm \sqrt{16-24}}{2}$
$=\frac{-4 \pm \sqrt{-8}}{2}$
$=-2 \pm \sqrt{-2}$
i. e., $x^{2}=-2 \pm \sqrt{-2}$
$\Rightarrow x=\sqrt{-2 \pm \sqrt{-2}}$, which is not a real number.
The zeroes of a polynomial should be real number $s$.
$\therefore$ The given $f(x)$ has no zeroes.