Show that the points A(7, 10), B(-2, 5) and C(3, -4) are the vertices of an isosceles right-angled triangle.
Given: The 3 points are $A(7,10), B(-2,5)$ and $C(3,-4)$
$A B=\sqrt{(-2-7)^{2}+(5-10)^{2}}$
$=\sqrt{81+25}$
$=\sqrt{106}$ units …..(1)
$B C=\sqrt{(3+2)^{2}+(-4-5)^{2}}$
$=\sqrt{25+81}$
$=\sqrt{106}$ units …..(2)
$A C=\sqrt{(3-7)^{2}+(-4-10)^{2}}$
$=\sqrt{16+196}$
$=\sqrt{2} 12$ units
From equations 1 and 2, we have
⇒ AB = BC
Therefore, Δ ABC is an isosceles triangle …..(3)
Also, $\mathrm{AB}^{2}=106$ units …..(4)
$\mathrm{BC}^{2}=106$ units ...........(5)
$\mathrm{AC}^{2}=212$ units .............(6)
From equations 4, 5 and 6, we have
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$
So, it satisfies the Pythagoras theorem.
Δ ABC is right angled triangle …..(7)
From 3 and 7 , we have
$\triangle \mathrm{ABC}$ is an isosceles right angled triangle.
Hence, proved.