Show that the points (−3, 2), (−5,−5), (2, −3) and (4, 4) are the vertices of a rhombus. Find the area of this rhombus.
The distance $d$ between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by the formula
$d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
In a rhombus all the sides are equal in length. And the area ‘A’ of a rhombus is given as
$A=\frac{1}{2}$ (Product of both diagonals)
Here the four points are A(−3,2), B(−5,−5), C(2,−3) and D(4,4)
First let us check if all the four sides are equal.
$A B=\sqrt{(-3+5)^{2}+(2+5)^{2}}$
$=\sqrt{(2)^{2}+(7)^{2}}$
$=\sqrt{4+49}$
$A B=\sqrt{53}$
$B C=\sqrt{(-5-2)^{2}+(-5+3)^{2}}$
$=\sqrt{(-7)^{2}+(-2)^{2}}$
$=\sqrt{49+4}$
$B C=\sqrt{53}$
$C D=\sqrt{(2-4)^{2}+(-3-4)^{2}}$
$=\sqrt{(-2)^{2}+(-7)^{2}}$
$=\sqrt{4+49}$
$C D=\sqrt{53}$
$A D=\sqrt{(-3-4)^{2}+(2-4)^{2}}$
$=\sqrt{(-7)^{2}+(-2)^{2}}$
$=\sqrt{49+4}$
$A D=\sqrt{53}$
Here, we see that all the sides are equal, so it has to be a rhombus.
Hence we have proved that the quadrilateral formed by the given four vertices is a.
Now let us find out the lengths of the diagonals of the rhombus.
$A C=\sqrt{(-3-2)^{2}+(2+3)^{2}}$
$=\sqrt{(-5)^{2}+(5)^{2}}$
$=\sqrt{25+25}$
$=\sqrt{50}$
$A C=5 \sqrt{2}$
$B D=\sqrt{(-5-4)^{2}+(-5-4)^{2}}$
$=\sqrt{(-9)^{2}+(-9)^{2}}$
$=\sqrt{81+81}$
$=\sqrt{162}$
$B D=9 \sqrt{2}$
Now using these values in the formula for the area of a rhombus we have,
$A=\frac{(5 \sqrt{2})(9 \sqrt{2})}{2}$
$=\frac{(5)(9)(2)}{2}$
$A=45$
Thus the area of the given rhombus is 45 square units.