Show that the function $f: R-\{3\} \rightarrow R-\{2\}$ given by $f(x)=\frac{x-2}{x-3}$ is a bijection.
$f: R-\{3\} \rightarrow R-\{2\}$ given by
$f(x)=\frac{x-2}{x-3}$
Injectivity:
Let x and y be any two elements in the domain (R − {3}), such that f(x) = f(y).
$f(x)=f(y)$
$\Rightarrow \frac{x-2}{x-3}=\frac{y-2}{y-3}$
$\Rightarrow(x-2)(y-3)=(y-2)(x-3)$
$\Rightarrow x y-3 x-2 y+6=x y-3 y-2 x+6$
$\Rightarrow x=y$
So, f is one-one
Surjectivity:
Let y be any element in the co-domain (R − {2}), such that f(x) = y for some element x in R − {3} (domain).
$f(x)=y$
$\Rightarrow \frac{x-2}{x-3}=y$
$\Rightarrow x-2=x y-3 y$
$\Rightarrow x y-x=3 y-2$
$\Rightarrow x(y-1)=3 y-2$
$\Rightarrow x=\frac{3 y-2}{y-1}$, which is in $R-\{3\}$
So, for every element in the co-domain, there exists some pre-image in the domain.
$\Rightarrow f$ is onto.
Since, f is both one-one and onto, it is a bijection.