Show that the function $f$ defined as follows, is continuous at $x=2$, but not differentiable thereat: $f(x)$$\begin{cases}3 x-2, & 0
Given:
$f(x)= \begin{cases}3 x-2, & 0
First, we will show that $f(x)$ is continuos at $x=2$.
We have,
$(\mathrm{LHL}$ at $x=2)$
$=\lim _{x \rightarrow 2^{-}} f(x)$
$=\lim _{h \rightarrow 0} f(2-h)$
$=\lim _{h \rightarrow 0} 2(2-h)^{2}-(2-h)$
$=\lim _{h \rightarrow 0}\left(8+2 h^{2}-8 h-2+h\right)$
$=6$
(RHL at x = 2)
$=\lim _{x \rightarrow 2^{+}} f(x)$
$=\lim _{h \rightarrow 0} f(2+h)$
$=\lim _{h \rightarrow 0} 5(2+h)-4$
$=\lim _{h \rightarrow 0}(10+5 h-4)$
$=6$
and $f(2)=2 \times 4-2=6$
Thus, $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2)$.
Hence the function is continuous at x=2.
Now, we will check whether the given function is differentiable at x = 2.
We have,
(LHD at x = 2)
$\lim _{x \rightarrow 2^{-}} \frac{f(x)-f(2)}{x-2}$
$=\lim _{h \rightarrow 0} \frac{f(2-h)-f(2)}{-h}$
$=\lim _{h \rightarrow 0} \frac{2 h^{2}-7 h+6-6}{-h}$
$=\lim _{h \rightarrow 0}-2 h+7$
$=7$
(RHD at x = 2)
$\lim _{x \rightarrow 2^{+}} \frac{f(x)-f(2)}{x-2}$
$=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$
$=\lim _{h \rightarrow 0} \frac{10+5 h-4-6}{h}$
$=5$
Thus, LHD at x=2 ≠ RHD at x = 2.
Hence, function is not differentiable at x = 2.