Question:
Show that the function $f: Z \rightarrow Z: f(x)=x^{3}$ is one-one and into.
Solution:
To prove: function is one-one and into
Given: $f: Z \rightarrow Z: f(x)=x^{3}$
Solution: We have,
$f(x)=x^{3}$
For, $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow \mathrm{x}_{1}^{3}=\mathrm{x}_{2}^{3}$
$\Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}$
When, $f\left(x_{1}\right)=f\left(x_{2}\right)$ then $x_{1}=x_{2}$
$\therefore f(x)$ is one-one
$f(x)=x^{3}$
Let $f(x)=y$ such that $y \in Z$
$\Rightarrow y=x^{3}$
$\Rightarrow x=\sqrt[3]{y}$
If $y=2$, as $y \in Z$
Then we will get an irrational value of $x$, but $x \in Z$
Hence $f(x)$ is into
Hence Proved