Show that the function

Question:

$\int \frac{d x}{x^{2}+2 x+2}$ equals

A. $x \tan ^{-1}(x+1)+C$

B. $\tan ^{-1}(x+1)+C$

C. $(x+1) \tan ^{-1} x+\mathrm{C}$

D. $\tan ^{-1} x+\mathrm{C}$

Solution:

$\int \frac{d x}{x^{2}+2 x+2}=\int \frac{d x}{\left(x^{2}+2 x+1\right)+1}$

$=\int \frac{1}{(x+1)^{2}+(1)^{2}} d x$

$=\left[\tan ^{-1}(x+1)\right]+\mathrm{C}$

Hence, the correct answer is B.

Leave a comment