Show that the function $\mathrm{f}(\mathrm{x})=\sin \left(2 \mathrm{x}+\frac{\pi}{4}\right)$ is decreasing on $\left(\frac{3 \pi}{8}, \frac{5 \pi}{8}\right)$
Given:- Function $\mathrm{f}(\mathrm{x})=\sin \left(2 \mathrm{x}+\frac{\pi}{4}\right)$
Theorem:- Let $\mathrm{f}$ be a differentiable real function defined on an open interval $(\mathrm{a}, \mathrm{b})$.
(i) If $f^{\prime}(x)>0$ for $a l l x \in(a, b)$, then $f(x)$ is increasing on $(a, b)$
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$
Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.
For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$\mathrm{f}(\mathrm{x})=\sin \left(2 \mathrm{x}+\frac{\pi}{4}\right)$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left\{\sin \left(2 \mathrm{x}+\frac{\pi}{4}\right)\right\}$
$\Rightarrow \mathrm{f}(\mathrm{x})=\cos \left(2 \mathrm{x}+\frac{\pi}{4}\right) \times 2$
$\Rightarrow \mathrm{f}(\mathrm{x})=2 \cos \left(2 \mathrm{x}+\frac{\pi}{4}\right)$
Now, as given
$x \in\left(\frac{3 \pi}{8}, \frac{5 \pi}{8}\right)$
$\Rightarrow \frac{3 \pi}{8} $\Rightarrow \frac{3 \pi}{4}<2 x<\frac{5 \pi}{4}$ $\Rightarrow \pi<2 x+\frac{\pi}{4}<\frac{3 \pi}{2}$; as here $2 x+\frac{\pi}{4}$ lies in $3^{\text {rd }}$ quadrant $\Rightarrow \cos \left(2 x+\frac{\pi}{4}\right)<0$ $\Rightarrow 2 \cos \left(2 x+\frac{\pi}{4}\right)<0$ $\Rightarrow f^{\prime}(x)<0$ hence, Condition for $f(x)$ to be decreasing Thus $f(x)$ is decreasing on interval $\left(\frac{3 \pi}{8}, \frac{5 \pi}{8}\right)$