Show that the following set of curves intersect orthogonally:
$y=x^{3}$ and $6 y=7-x^{2}$
Given:
Curves $y=x^{3} \ldots(1)$
$\& 6 y=7-x^{2} \ldots(2)$
Solving (1) \& (2), we get
$\Rightarrow 6 y=7-x^{2}$
$\Rightarrow 6\left(x^{3}\right)=7-x^{2}$
$\Rightarrow 6 x^{3}+x^{2}-7=0$
Since $f(x)=6 x^{3}+x^{2}-7$
we have to find $f(x)=0$, so that $x$ is a factor of $f(x)$.
when $x=1$
$f(1)=6(1)^{3}+(1)^{2}-7$
$f(1)=6+1-7$
$f(1)=0$
Hence, $x=1$ is a factor of $f(x)$.
Substituting $x=1$ in $y=x^{3}$, we get
$y=1^{3}$
$y=1$
The point of intersection of two curves is $(1,1)$
First curve $y=x^{3}$
Differentiating above w.r.t $x$,
$\Rightarrow m_{1}=\frac{d y}{d x}=3 x^{2}$ .....(3)
Second curve $6 y=7-x^{2}$
Differentiating above w.r.t $x$,
$\Rightarrow 6 \frac{\mathrm{dy}}{\mathrm{dx}}=0-2 \mathrm{x}$
$\Rightarrow \mathrm{m}_{2}=\frac{-2 \mathrm{x}}{6}$
$\Rightarrow \mathrm{m}_{2}=\frac{-\mathrm{x}}{3} \ldots(4)$
At $(1,1)$, we have,
$m_{1}=3 x^{2}$
$\Rightarrow 3 \times(1)^{2}$
$\mathrm{m}_{1}=3$
At $(1,1)$, we have,
$\Rightarrow m_{2}=\frac{-x}{3}$
$\Rightarrow \frac{-1}{3}$
$\Rightarrow m_{2}=\frac{-1}{3}$
When $m_{1}=3 \& m_{2}=\frac{-1}{3}$
$\Rightarrow 3 \times \frac{-1}{3}=-1$
$\therefore$ Two curves $y=x^{3} \& 6 y=7-x^{2}$ intersect orthogonally.