Show that the following four conditions are equivalent:
(i) A ⊂ B
(ii) A – B = Φ
(iii) A ∪ B = B
(iv) A ∩ B = A
First, we have to show that (i) ⇔ (ii).
Let A ⊂ B
To show: A – B ≠ Φ
If possible, suppose A – B ≠ Φ
This means that there exists x ∈ A, x ≠ B, which is not possible as A ⊂ B.
∴ A – B = Φ
∴ A ⊂ B ⇒ A – B = Φ
Let A – B = Φ
To show: A ⊂ B
Let x ∈ A
Clearly, x ∈ B because if x ∉ B, then A – B ≠ Φ
∴ A – B = Φ ⇒ A ⊂ B
∴ (i) ⇔ (ii)
Let A ⊂ B
To show: $\mathrm{A} \cup \mathrm{B}=\mathrm{B}$
Clearly, $\mathrm{B} \subset \mathrm{A} \cup \mathrm{B}$
Let $x \in A \cup B$
$\Rightarrow x \in \mathrm{A}$ or $x \in \mathrm{B}$
Case I: $x \in \mathrm{A}$
$\Rightarrow x \in \mathrm{B} \quad[\because \mathrm{A} \subset \mathrm{B}]$
$\therefore \mathrm{A} \cup \mathrm{B} \subset \mathrm{B}$
Case II: $x \in B$
Then, $\mathrm{A} \cup \mathrm{B}=\mathrm{B}$
Conversely, let $\mathrm{A} \cup \mathrm{B}=\mathrm{B}$
Let $x \in A$
$\Rightarrow x \in \mathrm{A} \cup \mathrm{B} \quad[\because \mathrm{A} \subset \mathrm{A} \cup \mathrm{B}]$
$\Rightarrow x \in \mathrm{B} \quad[\because \mathrm{A} \cup \mathrm{B}=\mathrm{B}]$
$\therefore A \subset B$
Hence, (i) $\Leftrightarrow$ (iii)
Now, we have to show that (i) $\Leftrightarrow$ (iv).
Let $A \subset B$
Clearly $\mathrm{A} \cap \mathrm{B} \subset \mathrm{A}$
Let $x \in \mathrm{A}$
We have to show that $x \in A \cap B$
As $A \subset B, x \in B$
$\therefore x \in A \cap B$
$\therefore \mathrm{A} \subset \mathrm{A} \cap \mathrm{B}$
Hence, $A=A \cap B$
Conversely, suppose $A \cap B=A$
Let $x \in A$
$\Rightarrow x \in A \cap B$
$\Rightarrow x \in A$ and $x \in B$
$\Rightarrow x \in B$
$\therefore A \subset B$
Hence, (i) $\Leftrightarrow$ (iv).