Show that the following curves intersect orthogonally at the indicated points :
$y^{2}=8 x$ and $2 x^{2}+y^{2}=10$ at $(1,2 \sqrt{2})$
Given:
Curves $y^{2}=8 x \ldots(1)$
$\& 2 x^{2}+y^{2}=10 \ldots(2)$
The point of intersection of two curves are $(0,0) \&(1,2 \sqrt{2})$
Now, Differentiating curves (1) \& (2) w.r.t x, we get
$\Rightarrow y^{2}=8 x$
$\Rightarrow 2 y \cdot \frac{d y}{d x}=8$
$\Rightarrow \frac{d y}{d x}=\frac{8}{2 y}$
$\Rightarrow \frac{d y}{d x}=\frac{4}{y} \ldots(3)$
$\Rightarrow 2 x^{2}+y^{2}=10$
Differentiating above w.r.t $\mathrm{x}$,
$\Rightarrow 4 x+2 y \cdot \frac{d y}{d x}=0$
$\Rightarrow 2 x+y \cdot \frac{d y}{d x}=0$
$\Rightarrow y \cdot \frac{d y}{d x}=-2 x$
$\Rightarrow \frac{d y}{d x}=\frac{-2 x}{y} \ldots(4)$
Substituting $(1,2 \sqrt{2})$ for $m_{1} \& m_{2}$, we get,
$m_{1}=\frac{4}{y}$
$\Rightarrow \frac{4}{2 \sqrt{2}}$
$m_{1}=\sqrt{2} \ldots(5)$
$m_{2}=\frac{-2 x}{y}$
$\Rightarrow \frac{-2 \times 1}{2 \sqrt{2}}$
$m_{2}=-\frac{-1}{\sqrt{2}} \ldots(6)$
when $m_{1}=\sqrt{2} \& m_{2}=\frac{-1}{\sqrt{2}}$
Two curves intersect orthogonally if $m_{1} m_{2}=-1$, where $m_{1}$ and $m_{2}$ the slopes of the two curves.
$\Rightarrow \sqrt{2} \times \frac{-1}{\sqrt{2}}=-1$
$\therefore$ Two curves $y^{2}=8 x \& 2 x^{2}+y^{2}=10$ intersect orthogonally.