Show that the following curves intersect orthogonally at the indicated points:
$x^{2}=4 y$ and $4 y+x^{2}=8$ at $(2,1)$
Given:
Curves $x^{2}=4 y \ldots(1)$
$\& 4 y+x^{2}=8 \ldots(2)$
The point of intersection of two curves $(2,1)$
Solving $(1) \&(2)$, we get,
First curve is $x^{2}=4 y$c
Differentiating above w.r.t $\mathrm{x}$,
$\Rightarrow 2 x=4 \cdot \frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}=\frac{2 x}{4}$
$\Rightarrow m_{1}=\frac{x}{2} \ldots(3)$
Second curve is $4 y+x^{2}=8$
$\Rightarrow 4 \cdot \frac{d y}{d x}+2 x=0$
$\Rightarrow \frac{d y}{d x}=\frac{-2 x}{4}$
$\Rightarrow m_{2}=\frac{-x}{2} \ldots(4)$
Substituting $(2,1)$ for $m_{1} \& m_{2}$, we get,
$m_{1}=\frac{x}{2}$
$\Rightarrow \frac{2}{2}$
$m_{1}=1 \ldots(5)$
$m_{2}=\frac{-x}{2}$
$\Rightarrow \frac{-2}{2}$
$m_{2}=-1 \ldots(6)$
when $m_{1}=1 \& m_{2}=-1$
$\Rightarrow 1 \times-1=-1$
$\therefore$ Two curves $x^{2}=4 y \& 4 y+x^{2}=8$ intersect orthogonally.