Show that the expansion of $\left(x^{2}+\frac{1}{x}\right)^{12}$ does not contain any term involving $x^{-1}$
For $\left(x^{2}+\frac{1}{x}\right)^{12}$
$\mathrm{a}=\mathrm{x}^{2}, \mathrm{~b}=\frac{1}{\mathrm{x}}$ and $\mathrm{n}=12$
We have a formula,
$\mathrm{t}_{\mathrm{r}+1}=\left(\begin{array}{l}\mathrm{n} \\ \mathrm{r}\end{array}\right) \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$
$=\left(\begin{array}{c}12 \\ r\end{array}\right)\left(x^{2}\right)^{12-r}\left(\frac{1}{x}\right)^{r}$
$=\left(\begin{array}{c}12 \\ r\end{array}\right)(x)^{24-2 r}(x)^{-r}$
$=\left(\begin{array}{c}12 \\ r\end{array}\right)(x)^{24-2 r-r}$
$=\left(\begin{array}{c}12 \\ r\end{array}\right)(x)^{24-3 r}$
To get coefficient of $x^{-1}$ we must have,
$(x)^{24-3 r}=(x)^{-1}$
- $24-3 r=-1$
- $3 r=25$
- $r=8.3333$
As $\left(\begin{array}{c}20 \\ \mathrm{r}\end{array}\right)=\left(\begin{array}{c}20 \\ 8.3333\end{array}\right)$ is not possible
Therefore, the term containing $x^{-1}$ does not exist in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{12}$