Question:
Show that the equation $x^{2}+y^{2}+x-y=0$ represents a circle. Find its centre and radius.
Solution:
The general equation of a conic is as follows
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ where $a, b, c, f, g, h$ are constants
For a circle, a = b and h = 0.
The equation becomes:
$x^{2}+y^{2}+2 g x+2 f y+c=0 \ldots$ (i)
Given, $x^{2}+y^{2}+x-y=0$
Comparing with (i) we see that the equation represents a circle with $2 \mathrm{~g}=1$
$\Rightarrow g=\frac{1}{2}, 2 f=-1 \Rightarrow f=-\frac{1}{2}$ and $c=0$
Centre $(-g,-f)=\left\{-\frac{1}{2},-\left(-\frac{1}{2}\right)\right\}$
$=\left(-\frac{1}{2}, \frac{1}{2}\right)$
Radius $=\sqrt{g^{2}+f^{2}-c}$
$=\sqrt{\frac{1^{2}}{2}+\left(-\frac{1^{2}}{2}\right)-0}$
$=\sqrt{\frac{1}{4}+\frac{1}{4}}=\sqrt{\frac{1}{2}}$