Show that the curves $4 x=y^{2}$ and $4 x y=k$ cut at right angles, if $k^{2}=512$.
Given:
Curves $4 x=y^{2} \ldots$ (1)
$\& 4 x y=k \ldots(2)$
We have to prove that two curves cut at right angles if $k^{2}=512$
Now , Differentiating curves (1) \& (2) w.r.t x, we get
$\Rightarrow 4 x=y^{2}$
$\Rightarrow 4=2 y \cdot \frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}=\frac{2}{y}$
$m_{1}=\frac{2}{y} \ldots(3)$
$\Rightarrow 4 x y=k$
Differentiating above w.r.t $x$,
$\Rightarrow 4\left(1 \times y+x \frac{d y}{d x}\right)=0$
$\Rightarrow y+x \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{-y}{x}$
$\Rightarrow m_{2}=\frac{-y}{x} \ldots(4)$
Since $m_{1}$ and $m_{2}$ cuts orthogonally,
$\Rightarrow \frac{2}{y} \times \frac{-y}{x}=-1$
$\Rightarrow \frac{-2}{x}=-1$
$\Rightarrow x=2$
Now, Solving (1) \& (2), we get,
$4 x y=k \& 4 x=y^{2}$
$\Rightarrow\left(y^{2}\right) y=k$
$\Rightarrow y^{3}=k$
$\Rightarrow y=k^{\frac{1}{3}}$
Substituting $y=k^{\frac{1}{3}}$ in $4 x=y^{2}$, we get,
$\Rightarrow 4 \times=\left(k \frac{1}{3}\right)^{2}$
$\Rightarrow 4 \times 2=k^{\frac{2}{3}}$
$\Rightarrow k^{\frac{2}{3}}=8$
$\Rightarrow k^{2}=8^{3}$
$\Rightarrow k^{2}=512$