Show that the cube of a positive integer is of the form $6 q+r$, where $q$ is ana integer and $r=0,1,2,3,4,5$.
Show that the cube of a positive integer is of the form $6 q+r$, where $q$ is ana integer and $r=0,1,2,3,4,5$.
Suppose a be any arbitrary positive integer, then by Euclid's division algorithm, corresponding to the positive integers a and 6, there exists non-negative integers a and r such that
$a=6 q+r$, where $0 \leq r<6$
$\Rightarrow a^{3}=(6 q+r)^{3}=216 q^{3}+r^{3}+3 \times 6 q \times r(6 q+r)$
$\Rightarrow a^{3}=6\left(216 q^{3}+108 q^{2} r+18 q r^{2}\right)+r^{3} \quad \ldots \ldots(1) \quad$ where, $0 \leq r<6$
Case: 1
When r = 0.
Putting r = 0 in (1), we get
$a^{3}=216 q^{3}=6\left(36 q^{3}\right)=6 m$
Where, $m=36 q^{3}$ is an integer
Case: 2
When r = 1.
Putting r = 1 in (1), we get
$a^{3}=\left(216 q^{3}+108 q^{2}+18 q\right)+1$
$\Rightarrow a^{3}=6\left(36 q^{3}+18 q^{2}+3 q\right)+1$
$\Rightarrow a^{3}=6 m+1$
Where, $m=\left(36 q^{3}+18 q^{2}+3 q\right)$ is an integer
Case: 3
When r = 2.
Putting r = 2 in (1), we get
$a^{3}=\left(216 q^{3}+216 q^{2}+72 q\right)+8$
$\Rightarrow a^{3}=\left(216 q^{3}+216 q^{2}+72 q+6\right)+2$
$\Rightarrow a^{3}=6\left(36 q^{3}+36 q^{2}+12 q+1\right)+2$
$\Rightarrow a^{3}=6 m+2$
Where, $m=\left(36 q^{3}+36 q^{2}+12 q+1\right)$ is an integer
Case: 4
When r = 3.
Putting r = 3 in (1), we get
$a^{3}=\left(216 q^{3}+324 q^{2}+162 q\right)+27$
$\Rightarrow a^{3}=\left(216 q^{3}+324 q^{2}+162 q+24\right)+3$
$\Rightarrow a^{3}=6\left(36 q^{2}+54 q^{2}+27 q+4\right)+3$
$\Rightarrow a^{3}=6 m+3$
Where, $m=\left(36 q^{2}+54 q^{2}+27 q+4\right)$ is an integer
Case: 5
When r = 4
Put r = 4 in (1), we get
$a^{3}=\left(216 q^{3}+432 q^{2}+288 q\right)+64$
$\Rightarrow a^{3}=\left(36 q^{3}+72 q^{2}+48 q+60\right)+4$
$\Rightarrow a^{3}=6\left(36 q^{3}+72 q^{2}+48 q+10\right)+4$
$\Rightarrow a^{3}=6 m+4$
Where, $m=\left(36 q^{3}+72 q^{2}+48 q+10\right)$ is an integer
Case: 6
When r = 5.
Putting r = 5 in (1), we get
$a^{3}=216 q^{3}+540 q^{2}+450 q+125$
$\Rightarrow a^{3}=6\left(36 q^{3}+90 q^{2}+75 q+20\right)+5$
$\Rightarrow a^{3}=6 m+5$
Where, $m=\left(36 q^{3}+90 q^{2}+75 q+20\right)$ is an integer
Hence, the cube of any positive integer of the form 6q + r, where q is an integer and r = 0, 1, 2, 3, 4, 5.