Show that the coefficient of $x^{4}$ in the expansion of $\left(1+2 x+x^{2}\right)^{5}$ is 212
To show: that the coefficient of $x^{4}$ in the expansion of $\left(1+2 x+x^{2}\right)^{5}$ is 212 .
Formula Used:
We have
$\left(1+2 x+x^{2}\right)^{5}=\left(1+x+x+x^{2}\right)^{5}$
$=(1+x+x(1+x))^{5}$
$=(1+x)^{5}(1+x)^{5}$
$=(1+x)^{10}$
General term, $T_{r+1}$ of binomial expansion $(x+y)^{n}$ is given by,
$T_{r+1}={ }^{n} C_{r} x^{n-r} y^{r}$ where $s$
${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{n !}{r !(n-r) !}$
Now, finding the general term,
$\mathrm{T}_{\mathrm{r}+1}={ }^{10} \mathrm{Cr} \times \mathrm{X}^{10-\mathrm{r}} \times(1)^{\mathrm{r}}$
$10-r=4$
$r=6$
Thus, the coefficient of $x^{4}$ in the expansion of $\left(1+2 x+x^{2}\right)^{5}$ is given by,
${ }^{10} \mathrm{C}_{4}=\frac{10 !}{4 ! 6 !}$
${ }^{10} \mathrm{C}_{4}=\frac{10 \times 9 \times 8 \times 7 \times 6 !}{24 \times 6 !}$
${ }^{10} \mathrm{C}_{4}=210$
Thus, the coefficient of $x^{4}$ in the expansion of $\left(1+2 x+x^{2}\right)^{5}$ is 210