Show that none of the following is an identity:
(i) cos2θ + cos θ = 1
(ii) sin2θ + sin θ = 2
(iii) tan2θ + sin θ = cos2θ
(i) $\cos ^{2} \theta+\cos \theta=1$
$\mathrm{LHS}=\cos ^{2} \theta+\cos \theta$
$=1-\sin ^{2} \theta+\cos \theta$
$=1-\left(\sin ^{2} \theta-\cos \theta\right)$
Since $\mathrm{LHS} \neq \mathrm{RHS}$, this is not an identity.
(ii) $\sin ^{2} \theta+\sin \theta=1$
$\mathrm{LHS}=\sin ^{2} \theta+\sin \theta$
$=1-\cos ^{2} \theta+\sin \theta$+
$=1-\left(\cos ^{2} \theta-\sin \theta\right)$
Since LHS $\neq$ RHS, this is not an identity.
(iii) $\tan ^{2} \theta+\sin \theta=\cos ^{2} \theta$
$\mathrm{LHS}=\tan ^{2} \theta+\sin \theta$
$=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}+\sin \theta$
$=\frac{1-\cos ^{2} \theta}{\cos ^{2} \theta}+\sin \theta$
$=\sec ^{2} \theta-1+\sin \theta$
Since LHS $\neq$ RHS, this is not an identity.