Show that $f(x)=\tan x$ is an increasing function on $(-\pi / 2, \pi / 2)$.
Given:- Function $f(x)=\tan x$
Theorem:- Let $f$ be a differentiable real function defined on an open interval $(a, b)$.
(i) If $f^{\prime}(x)>0$ for $a l l_{x} \in(a, b)$, then $f(x)$ is increasing on $(a, b)$
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$
Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.
For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=\tan x$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}(\tan \mathrm{x})$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\sec ^{2} \mathrm{x}$
Now, as given
$\mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
That is $4^{\text {th }}$ quadrant, where
$\Rightarrow \sec ^{2} x>0$
$\Rightarrow f^{\prime}(x)>0$
hence, Condition for $f(x)$ to be increasing
Thus $f(x)$ is increasing on interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$