Show that $f(x)=\sin x$ is increasing on $(0, \pi / 2)$ and decreasing on $(\pi / 2, \pi)$ and neither increasing nor decreasing in $(0, \pi)$.
Given:- Function $f(x)=\sin x$
Theorem:- Let $f$ be a differentiable real function defined on an open interval $(a, b)$.
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on $(a, b)$
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$
Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.
For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=\sin x$
$\Rightarrow f(x)=\frac{d}{d x}(\sin x)$
$\Rightarrow f^{\prime}(x)=\cos x$
Taking different region from 0 to $2 \pi$
a) let $x \in\left(0, \frac{\pi}{2}\right)$
$\Rightarrow \cos (x)>0$
$\Rightarrow f^{\prime}(x)>0$
Thus $f(x)$ is increasing in $\left(0, \frac{\pi}{2}\right)$
b) let $x \in\left(\frac{\pi}{2}, \pi\right)$
$\Rightarrow \cos (x)<0$
$\Rightarrow f^{\prime}(x)<0$
Thus $f(x)$ is decreasing in $\left(\frac{\pi}{2}, \pi\right)$
Therefore, from above condition we find that
$\Rightarrow f(x)$ is increasing in $\left(0, \frac{\pi}{2}\right)$ and decreasing in $\left(\frac{\pi}{2}, \pi\right)$
Hence, condition for $f(x)$ neither increasing nor decreasing in $(0, \pi)$