Show that $f(x)=\cos x$ is a decreasing function on $(0, \pi)$, increasing in $(-\pi, 0)$ and neither increasing nor
decreasing in $(-\pi, \pi)$.
Given:- Function $f(x)=\cos x$
Theorem:- Let $\mathrm{f}$ be a differentiable real function defined on an open interval $(\mathrm{a}, \mathrm{b})$.
(i) If $f^{\prime}(x)>0$ for $a l l_{X} \in(a, b)$, then $f(x)$ is increasing on $(a, b)$
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$
Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.
For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
$f(x)=\cos x$
$\Rightarrow f(x)=\frac{d}{d x}(\cos x)$
$\Rightarrow f^{\prime}(x)=-\sin x$
Taking different region from 0 to $2 \pi$
a) let $x \in(0, \pi)$
$\Rightarrow \sin (x)>0$
$\Rightarrow-\sin x<0$
$\Rightarrow f^{\prime}(x)<0$
Thus $f(x)$ is decreasing in $(0, \pi)$
b) let $x \in(-\pi, 0)$
$\Rightarrow \sin (x)<0$
$\Rightarrow-\sin x>0$
$\Rightarrow f^{\prime}(x)>0$
Thus $f(x)$ is increasing in $(-\pi, 0)$
Therefore, from above condition we find that
$\Rightarrow f(x)$ is decreasing in $(0, \pi)$ and increasing in $(-\pi, 0)$
Hence, condition for $f(x)$ neither increasing nor decreasing in $(-\pi, \pi)$