Show that among all positive numbers $x$ and $y$ with $x 2+y 2=r 2$, the sum $x+y$ is largest when $x=y=r \sqrt{2}$.
Here,
$x^{2}+y^{2}=r^{2}$
$\Rightarrow y=\sqrt{r^{2}-x^{2}}$ ......(1)
Now,
$Z=x+y$
$\Rightarrow Z=x+\sqrt{r^{2}-x^{2}}$ [From eq. (1)]
$\Rightarrow \frac{d Z}{d x}=1+\frac{(-2 x)}{2 \sqrt{r^{2}-x^{2}}}$
For maximum or minimum values of $Z$, we must have
$\frac{d Z}{d x}=0$
$\Rightarrow 1+\frac{(-2 x)}{2 \sqrt{r^{2}-x^{2}}}=0$
$\Rightarrow 2 x=2 \sqrt{r^{2}-x^{2}}$
$\Rightarrow x=\sqrt{r^{2}-x^{2}}$
Squaring both the sides, we get
$\Rightarrow x^{2}=r^{2}-x^{2}$
$\Rightarrow 2 x^{2}=r^{2}$
$\Rightarrow x=\frac{r}{\sqrt{2}}$
Substituting the value of $x$ in eq. $(1)$, we get
$y=\sqrt{r^{2}-x^{2}}$
$\Rightarrow y=\sqrt{r^{2}-\left(\frac{r}{\sqrt{2}}\right)^{2}}$
$\Rightarrow y=\frac{r}{\sqrt{2}}$
$\frac{d^{2} z}{d x^{2}}=\frac{-\sqrt{r^{2}-x^{2}}+\frac{x(-x)}{\sqrt{r^{2}-x^{2}}}}{r^{2}-x^{2}}$
$\Rightarrow \frac{d^{2} z}{d x^{2}}=\frac{-r^{2}+x^{2}-x^{2}}{\left(r^{2}-x^{2}\right)^{\frac{3}{2}}}$
$\Rightarrow \frac{d^{2} z}{d x^{2}}=\frac{-r^{2}}{r^{3}} \times 2 \sqrt{2}$
$\Rightarrow \frac{d^{2} z}{d x^{2}}=\frac{-2 \sqrt{2}}{r}<0$
So, $z=x+y$ is maximum when $x=y=\frac{r}{\sqrt{2}}$.
Hence proved.