Question.
Show that $a_{1}, a_{2}, \ldots a_{n}, \ldots$ form an $A P$ where $a_{n}$ is defined as below :
(i) $a_{n}=3+4 n$
(ii) $a_{n}=9-5 n$
Also find the sum of the first 15 terms in each case.
Show that $a_{1}, a_{2}, \ldots a_{n}, \ldots$ form an $A P$ where $a_{n}$ is defined as below :
(i) $a_{n}=3+4 n$
(ii) $a_{n}=9-5 n$
Also find the sum of the first 15 terms in each case.
Solution:
(i) $a_{n}=3+4 n$
Putting $\mathrm{n}=1,2,3,4, \ldots$ in $(1)$, we get
$a_{1}=3+4=7, a_{2}=3+8=11$
$a_{3}=3+12=15, a_{4}=3+16=19, \ldots$
Thus, the sequence (list of numbers) is
7, 11, 15, 19, .....
Here, $\quad a_{2}-a_{1}=11-7=4$
$a_{3}-a_{2}=15-11=4$
$a_{4}-a_{3}=19-15=4$
Therefore, the sequence forms an AP in which
a = 7 and d = 4.
$S_{15}=\frac{15}{2}\{2 a+14 d\}=\frac{15}{2}\{2 \times 7+14 \times 4\}$
$=\frac{15}{2} \times 70=15 \times 35=525$
(ii) $a_{n}=9-5 n$
$a_{1}=9-5 \times 1=9-5=4$
$a_{2}=9-5 \times 2=9-10=-1$
$a_{3}=9-5 \times 3=9-15=-6$
$a_{4}=9-5 \times 4=9-20=-11$
It can be observed that
$a_{2}-a_{1}=-1-4=-5$
$a_{3}-a_{2}=-6-(-1)=-5$
$a_{4}-a_{3}=-11-(-6)=-5$
Therefore, this is an A.P. with common difference as $-5$ and first term as 4 .
$S_{15}=\frac{15}{2}[2 a+(n-1) d]$
$=\frac{15}{2}[8+14(-5)]$
$=\frac{15}{2}(8-70)$
$=\frac{15}{2}(-62)=15(-31)$
$=-465$
Putting $\mathrm{n}=1,2,3,4, \ldots$ in $(1)$, we get
$a_{1}=3+4=7, a_{2}=3+8=11$
$a_{3}=3+12=15, a_{4}=3+16=19, \ldots$
Thus, the sequence (list of numbers) is
7, 11, 15, 19, .....
Here, $\quad a_{2}-a_{1}=11-7=4$
$a_{3}-a_{2}=15-11=4$
$a_{4}-a_{3}=19-15=4$
Therefore, the sequence forms an AP in which
a = 7 and d = 4.
$S_{15}=\frac{15}{2}\{2 a+14 d\}=\frac{15}{2}\{2 \times 7+14 \times 4\}$
$=\frac{15}{2} \times 70=15 \times 35=525$
(ii) $a_{n}=9-5 n$
$a_{1}=9-5 \times 1=9-5=4$
$a_{2}=9-5 \times 2=9-10=-1$
$a_{3}=9-5 \times 3=9-15=-6$
$a_{4}=9-5 \times 4=9-20=-11$
It can be observed that
$a_{2}-a_{1}=-1-4=-5$
$a_{3}-a_{2}=-6-(-1)=-5$
$a_{4}-a_{3}=-11-(-6)=-5$
Therefore, this is an A.P. with common difference as $-5$ and first term as 4 .
$S_{15}=\frac{15}{2}[2 a+(n-1) d]$
$=\frac{15}{2}[8+14(-5)]$
$=\frac{15}{2}(8-70)$
$=\frac{15}{2}(-62)=15(-31)$
$=-465$