Question:
$e^{x}(\sin x+\cos x)$
Solution:
Let $I=\int e^{x}(\sin x+\cos x) d x$
Let $f(x)=\sin x$
$\Rightarrow f^{\prime}(x)=\cos x$
$\therefore I=\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x$
It is known that, $\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+\mathrm{C}$
$\therefore I=e^{x} \sin x+\mathrm{C}$