Show that

Question:

$\sqrt{x^{2}+4 x-5}$

Solution:

Let $I=\int \sqrt{x^{2}+4 x-5} d x$

$=\int \sqrt{\left(x^{2}+4 x+4\right)-9} d x$

$=\int \sqrt{(x+2)^{2}-(3)^{2}} d x$

It is known that, $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+\mathrm{C}$

$\therefore I=\frac{(x+2)}{2} \sqrt{x^{2}+4 x-5}-\frac{9}{2} \log \left|(x+2)+\sqrt{x^{2}+4 x-5}\right|+\mathrm{C}$

 

Leave a comment