Question:
$\int_{0}^{x} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x$
Solution:
Let $I=\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x$ ...(1)
It is known that, $\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$I=\int_{0}^{a} \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}} d x$ ...(2)
Adding (1) and (2), we obtain
$2 I=\int_{0}^{a} \frac{\sqrt{x}+\sqrt{a-x}}{\sqrt{x}+\sqrt{a-x}} d x$
$\Rightarrow 2 I=\int_{0}^{a} 1 d x$
$\Rightarrow 2 I=[x]_{0}^{a}$
$\Rightarrow 2 I=a$
$\Rightarrow I=\frac{a}{2}$