Question:
$\frac{1}{\left(e^{x}-1\right)}$ [Hint: Put $\left.e^{x}=t\right]$
Solution:
$\frac{1}{\left(e^{x}-1\right)}$
Let $e^{x}=t \Rightarrow e^{x} d x=d t$
$\Rightarrow \int \frac{1}{e^{x}-1} d x=\int \frac{1}{t-1} \times \frac{d t}{t}=\int \frac{1}{t(t-1)} d t$
Let $\frac{1}{t(t-1)}=\frac{A}{t}+\frac{B}{t-1}$
$1=A(t-1)+B t$ ...(1)
Substituting t = 1 and t = 0 in equation (1), we obtain
A = −1 and B = 1
$\therefore \frac{1}{t(t-1)}=\frac{-1}{t}+\frac{1}{t-1}$
$\begin{aligned} \Rightarrow \int \frac{1}{t(t-1)} d t &=\log \left|\frac{t-1}{t}\right|+\mathrm{C} \\ &=\log \left|\frac{e^{x}-1}{e^{x}}\right|+\mathrm{C} \end{aligned}$